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Norton’s and Myrvold’s recent analyses of fluctuations and 

Landauer’s principle are compatible. 

 

 Norton’s (2013) “All Shook Up: Fluctuations, Maxwell's Demon and the 

Thermodynamics of Computation” and elsewhere argues that there is a thermodynamic cost in 

suppressing fluctuations on molecular scales. It follows that the minimal thermodynamic cost of 

completing any process is set by the number of steps to be completed, in contradiction with the 

Landauer principle literature that relates the minimal cost to the logic of the process, 

independently of the number and details of the steps of the implementation. 

 While not committing to Norton’s above “no-go” result, Myrvold’s (2021) “Shakin’ All 

Over: Proving Landauer’s Principle without Neglect of Fluctuations” seeks to place the 

thermodynamic cost computed in Landauer’s principle on a firmer theoretical foundation by 

deriving it within statistical physics, without assuming as a primitive the precarious notion of a 

thermodynamically reversible process. The analysis deals with systems subjected to external 

manipulations, represented as changes to the system’s Hamiltonian, and focuses on dissipation 

within those systems, setting aside entropy generated by the external systems driving the 

changes. It is argued that, in addition to any entropy generated by the external drivers, there is 

entropy generated within the manipulated system that is subject to the Landauer bound. 

 The juxtaposition of Norton’s and Myrvold’s colorful titles can lead to the 

misunderstanding that Myrvold’s results refute Norton’s “no-go” result. That is not the case, 

since Norton’s and Myrvold’s analyses proceed under different background assumptions. 
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Briefly, Norton’s no-go result requires that the thermodynamic properties of all processes must 

be considered, whereas Myrvold’s analysis leaves out of consideration the thermodynamic 

processes in the systems driving the changes in the system under consideration. 

 Norton’s no-go result follows from the consideration that all real thermal processes only 

advance if the total system entropy increases. It is assumed that minimal entropy production 

obtains in processes in which the total system passes slowly through a sequence of close-to-

equilibrium states. A process that takes some initial state “init” to a final state “fin” will only 

advance if the respective entropies are such that Sfin > Sinit. Boltzmann’s principle S = k log P 

relates these entropies to the equilibrium probability P of the corresponding state. Combining 

and inverting the logarithm, we recover that 

Pfin/Pinit = exp ((Sfin - Sinit)/k) 

where Pfin is the probability of successful completion of the process and Pinit is the probability 

that the process fails to complete because a fluctuation restores it to its initial state. If we seek 

just a modest probabilistic assurance that the process completes with Pfin/Pinit = 20, the entropy 

increase must be at least Sfin – Sinit = k log 20 = 3k. This entropy cost is independent of the logic 

implemented by the process and applies to each step individually of a compound process. 

 This has potential relevance to the literature surround Landauer’s principle in two ways. 

First, the result implies that, even if the Landauer bound on entropy production is satisfied, the 

minimal entropy production is actually higher than that provided by the Landauer bound. 

Second, insofar as arguments for Landauer’s principle rely on the assumption of the availability 

of processes that are thermodynamically reversible (or close to it), it threatens the cogency of 

those arguments. Myrvold’s tactic is, first,  to provide a proof of the Landauer principle that does 

not assume the availability of processes that are even close to reversible. Then, in section 4, he 

argues, via consideration of a system that is  heated by thermal contact with a heat reservoir, 

whose temperature slowly rises, that thermodynamic reversibility can be approached as nearly as 

one would like. It should be emphasized that this result concerns the thermodynamic properties 

of the system and the heat reservoir; systems controlling the process are left out of the analysis.  

An analysis of this sort enables an isolation of those parts of the processes whose thermodynamic 

cost derives from the many-to-one mappings of states considered in Landauer’s principle. 

 An application of Norton’s no-go result to these systems requires consideration of the 

thermodynamics of the processes that lead to the slow alteration of the parameters. These must 
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also be thermal processes that can only advance if their entropies increase. The no-go result 

applies. The temperature of a heat reservoir might increase since heat is passed to it from a 

warmer reservoir. There must be enough of an entropy-creating temperature difference between 

the two reservoirs to preclude fluctuations probabilistically reversing the direction of heat 

transfer. Similarly, there must be enough of an entropy-creating imbalance of forces to suppress 

fluctuations in the one particle gas that would reverse the compression. Devising suitable 

mechanisms for this last case is challenging. Norton (2011, §7.5; 2017, §IV) gives detailed 

calculations for particular mechanisms that enable gas expansion and recover results compatible 

with the no go result. 
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